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The drought monitoring and prediction/forecast systems at regional and global scales are 

reviewed for both research and decision-making communities.

AN OVERVIEW OF DROUGHT 
MONITORING AND PREDICTION 

SYSTEMS AT REGIONAL AND 
GLOBAL SCALES

Zengchao Hao, Xing Yuan, Youlong Xia, Fanghua Hao, and Vijay P. Singh

D	rought has plagued civilizations throughout the 	 
	course of human history. It is one of the most 
	damaging natural hazards with profound impacts 

on different sectors, resulting in agricultural losses, 
water scarcity, and famine (Sheffield and Wood 2012; 
Smith and Katz 2013). Severe drought events in recent 

decades and huge damages, along with the potential 
increase of drought frequency and severity due to cli-
mate change (Dai 2011), have highlighted the urgent 
need for drought-prone countries to establish effec-
tive drought early-warning systems that incorporate 
accurate drought monitoring, reliable drought predic-
tion, and effective information dissemination to assist 
decision-makers for drought planning and mitigation.

Drought is difficult to measure or even to define, 
which hinders approaches for accurate drought 
characterizations. The need to monitor complicated 
drought conditions has spurred a multitude of efforts 
to develop drought indicators based on different 
applications, regions affected, and data availability 
(Heim and Brewer 2012; Mishra and Singh 2010; 
Wilhite 2006), which take into account a variety of hy-
droclimatic variables, such as precipitation, soil mois-
ture, streamflow, snow, groundwater, evapotranspira-
tion, and vegetation. Meanwhile, reliable prediction 
of drought onset, development, and recovery are an 
important step toward effective early warnings, which 
can be achieved through either statistical approaches 
to explore empirical relationships in historical records 
or dynamical approaches based mostly on state-of-
the-art general circulation models (GCMs).
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Extensive efforts have been devoted to drought 
information dissemination and monitoring and pre-
diction studies in recent decades to reduce drought 
vulnerability through a proactive risk management 
approach. A suite of drought monitoring and predic-
tion systems (DMAPS) has been developed to monitor 
and provide early warning of drought conditions at 
regional (Funk 2009; Luo and Wood 2007; Lyon et al. 
2012; Sheffield et al. 2014; Svoboda et al. 2002; Wood 
and Lettenmaier 2006; Xia et al. 2014b) and global 
scales (Hao et al. 2014; Nijssen et al. 2014; Yuan et al. 
2015a). These systems differ in several aspects (e.g., 
indicator, resolution) and play an important role in 
helping decision-makers for drought management. 
Meanwhile, scientific and technical challenges still 
exist in developing and implementing DMAPS, such 
as inconsistency in data availability, lack of universally 
accepted indicators, and limitation in drought predic-
tion skill, which need to be addressed for improved 
drought planning and management.

The aim of this study is to provide an overview of 
the development of DMAPS at regional and global 
scales with focus on scientific and technical aspects, 
including advances and challenges in drought 
monitoring and prediction. The remaining sections 
introduce the basic components of drought monitor-
ing and prediction in the development of DMAPS, 
provide recent developments of DMAPS at regional 
and global scales, discuss advances and challenges, 
and summarize our main conclusions.

OVERVIEW OF DROUGHT MONITORING 
AND PREDICTION. Drought definition and indicator. 
The lack of precise and universally accepted definition 
of drought hinders the investigation of drought. Usual-
ly definitions of drought can be divided into four types, 
including meteorological, agricultural, hydrological, 
and socioeconomic drought, from the disciplinary 
perspective (Heim 2002; Keyantash and Dracup 2002; 
Wilhite and Glantz 1985). Various drought indices 

Fig. 1. (a) General concept in developing drought indicators to monitor different drought types with various 
inputs [SPI, soil moisture percentile (SMP), and standardized runoff index (SRI)]. (b) Monitoring meteorologi-
cal and agricultural drought based on (top) SPI and (bottom) SMP. (c) Global drought monitoring for Aug 2012 
with the composite indicator MSDI.
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have been developed for characterizing each type with 
different inputs (Fig. 1a). Developing and selecting 
drought indicators that are widely accepted and suit-
able for specific regions and applications are basic ele-
ments of drought monitoring and prediction. The stan-
dardized precipitation index (SPI) was recommended 
at a World Meteorological Organization (WMO) 
meeting as the primary meteorological drought index 
to track the meteorological drought, while no consen-
sus has been reached on standard indices for agricul-
tural or hydrological drought monitoring (Hayes et al. 
2011). A single drought indicator rarely works for all 
places/seasons for all types of drought, and a variety of 
multivariate or composite drought indices have been 
developed in the past decade by integrating a suite of 
hydroclimatic variables or indices for comprehensive 
drought monitoring (Figs. 1b,c; Hao and Singh 2015). 
Meanwhile, the threshold value of drought indicators, 
or the drought trigger, for defining drought categories 
or classes (e.g., moderate or severe drought) has also 
been studied to characterize drought conditions to aid 
drought response actions (Steinemann and Cavalcanti 
2006; Steinemann et al. 2015). However, no consensus 
has been reached so far for an objective threshold value.

Drought monitoring. Traditional drought monitoring 
is generally based on in situ observations of hydro-
climatic variables from observation networks at local 
scales, which falls short in drought characterization 
at regional scales due to sparse observation (e.g., 
soil moisture) networks. Substantial advances have 
been achieved in the availability of various datasets 
for monitoring drought, including remote sensing 
products, land surface model simulations, and im-
pact data. Remote sensing provides continuous and 
consistent observations with increasing availability 
for drought characterizations at regional and global 
scales, especially for regions with no or sparse in 
situ observations (Hao et al. 2016d; Wardlow et al. 
2015, 2012; Tang et al. 2009). These remote sensing 
products have led to new developments in drought 
monitoring, such as those based on the normalized 
difference vegetation index (NDVI), the evaporative 
stress index (ESI), and total storage anomaly measure-
ments from the National Aeronautics and Space Ad-
ministration (NASA)’s Gravity Recovery and Climate 
Experiment (GRACE; Anderson et al. 2011; Brown 
et al. 2008; Houborg et al. 2012; Kogan 1997; Mu et al. 
2013; Thomas et al. 2014), for which improved accu-
racy with suitable corrections and extended record 
through integration with other sources of datasets 
are generally desirable. Moreover, accurate drought 
monitoring requires us to track the propagation of 

drought through the hydrological cycle. Land surface 
model (LSM) simulations provide opportunities to 
continuously track multiple hydrologic f lux and 
state variables and are of particular importance in 
this regard for integrated drought modeling and 
analysis (Mo and Lettenmaier 2014; Sheffield et al. 
2012; Shukla et al. 2011; Xia et al. 2014a). For example, 
the monitoring of the drought conditions on 20 Sep-
tember 2011 in the United States is shown with the 
total column soil moisture from the North American 
Land Data Assimilation System (NLDAS-2) in Fig. 2, 
in which the 2011 Texas drought is clearly identified. 
Monitoring drought impacts on the environment 
and society (e.g., crop yield failure, vegetation stress, 
and water quality degradation) also emerges and has 
been recognized as a critical component of drought 
early-warning systems (DEWS; Svoboda et al. 2002; 
Hayes et al. 2011; Lackstrom et al. 2013; Bachmair 
et al. 2016).

To characterize complicated processes and im-
pacts of drought, integrated drought monitoring 
based on the composite or multivariate drought 
indicator from various sources has been used. The 
U.S. Drought Monitor (USDM), developed in 1999, 
is a landmark contribution in this regard, which 
blends multiple physical drought indicators and 
reported impacts with experts’ inputs to characterize 
drought conditions. It has been widely used by me-
dia, researchers, policy makers and planners, water 
and natural resource managers, and authorities [e.g., 
U.S. Department of Agriculture (USDA)] for various 
applications, including drought relief allocation and 
disaster declarations and responses (Svoboda 2015; 
Svoboda et al. 2002). For example, a USDM map with 
severity labeled with categories from least to most 
intense (D0–D4) for the week of 28 August 2012 is 
shown in Fig. 3 (top). It clearly indicates the severe 
drought conditions that struck the central United 
States. Integration of various data sources without 
losing the advantages of USDM products is desir-
able and also an outstanding challenge (Wood et al. 
2015). Certain efforts have been developed to address 
this need recently (Hao et al. 2016b,c; Xia et al. 
2014b). For example, an ordinal regression approach 
has been proposed recently to model drought cat-
egories with respect to multiple drought indices by 
estimating probabilities of drought categories falling 
in each category (shown in Fig. 3, bottom left). The 
reconstructed percentage areas of different drought 
categories from this approach based on NLDAS-2 
drought indices are shown in Fig. 3 (bottom right), 
which are generally close to the observations from 
USDM for the common period 1999–2013. Such 
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constructions are useful for historical drought as-
sessments in the United States for the period prior to 
the development of USDM. Research along this line 
also includes the reproducible and automated ap-
proaches for combining different physical indicators 
(Vicente-Serrano et al. 2010; Hao and Singh 2015; 
Mo and Lettenmaier 2014), such as the multivariate 
standardized drought index (MSDI) or the standard-
ized precipitation evapotranspiration index (SPEI), 
for the integrated drought monitoring. For example, 
the MSDI (rescaled with the percentile approach; 
Hao et al. 2016a) for August 2012 at the global scale 
is shown in Fig. 1c, which is computed based on 
monthly precipitation and soil moisture data from 
the land surface reanalysis datasets Modern-Era 
Retrospective Analysis for Research and Applica
tions (MERRA-Land; Reichle et al. 2011). Generally, 
the 2012 U.S. drought is captured by MSDI, though 
some differences in intensities may exist compared 
with USDM. Because of the limitation of individual 
drought indicators, usually a collection of them 
have to be continuously monitored. Moreover, the 

percentile-based approach allows for comparing and 
consolidating different drought indicators and has 
been commonly used in drought monitoring.

Drought prediction. Either based on statistical or dy-
namical approaches, the drought prediction problem 
essentially boils down to the forecast of several cru-
cial meteorological variables (i.e., precipitation and 
temperature). Statistical approaches, such as the re-
gression model and ensemble streamflow prediction 
(ESP), are mostly based on empirical relationships 
in historical records without considering underly-
ing physical mechanisms and have been used in the 
development of several DMAPS (Hao et al. 2014; 
Lyon et al. 2012). These approaches remain useful  
partly due to their ease of implementation. Drought 
forecasts from these approaches are generally used 
as a baseline/benchmark for dynamical forecasts and 
may provide complementary forecast information in 
certain seasons and/or regions.

Dynamical approaches rely on GCMs (extended 
weather forecast models or seasonal climate models), 

Fig. 2. Drought monitoring on 20 Sep 2011 in the United States based on total column soil moisture percentile 
(shading) from NLDAS-2 (courtesy of Eric Luebehusen).
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which are generally based on physical processes of 
atmosphere, ocean, cryosphere, and land surface and 
are the most advanced tools for climate (and meteo-
rological drought) forecast (Quan et al. 2012; Yoon 
et al. 2012; Yuan and Wood 2013; Schubert et al. 2016). 
For these approaches, the seasonal climate predict-
ability comes from the memory in tropical oceans via 
ocean–atmosphere teleconnections and from regional 
precursors such as stratospheric condition and soil 
moisture anomaly (Kirtman and Pirani 2009; Yuan 
et al. 2015a,b). Because of the limitation of coarse 
resolution and systematic model errors (Roundy 

et al. 2015), extra procedures, such as bias correction 
and downscaling, are required for coupling with the 
hydrologic model and matching the performance of 
statistical approaches. When driven by meteorologi-
cal forcing from the dynamical climate forecast (or 
observations), hydrological models or land surface 
models can be used to transfer the climate anomaly 
to hydrological state/flux variations for agricultural 
and hydrological drought characterization (Mo et al. 
2012b; Thober et al. 2015; Wood et al. 2002; Yuan 
et al. 2013). Meanwhile, characterizing uncertain-
ties associated with hydroclimatic predictions from 

Fig. 3. (top) The U.S. Drought Monitor map for the week of 28 Aug 2012 [adapted from U.S. Drought Monitor web-
site: http://droughtmonitor.unl.edu/; map courtesy of National Drought Mitigation Center (NDMC) of the University 
of Nebraska–Lincoln (UNL)]. (bottom left) Illustration of the ordinal regression approach to estimate probability 
of drought categories. (bottom right) Drought area percentage of drought categories (D2–D4) from USDM and 
reconstruction from the ordinal regression approach based on NLDAS-2 for the period 1979–2013 in Texas.
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various sources is important for assessing the reli-
ability of drought prediction products. The Hydro-
logical Ensemble Prediction Experiment (HEPEX; 
www.hepex.org/) includes important initiatives in 
this regard toward improving ensemble forecasts 
and uncertainty quantification with various post-
processing procedures for hydrologic forecast of rare 

events, including droughts and floods (Schaake et al. 
2007; Demargne et al. 2014; Van Lanen et al. 2016). 
Because statistical and dynamical approaches come 
with specific strengths and limitations in their own 
rights, integration of both methods (or the hybrid 
statistical–dynamical method) can be included in the 
development of DMAPS for early warning.

Table 1. Examples of regional drought monitoring and prediction systems around the globe. Abbreviations indi-
cate the following: combined drought indicator (CDI), comprehensive index (CI), evapotranspiration E, 
evaporative stress index (ESI), fraction of absorbed photosynthetically active radiation (fAPAR), normal-
ized difference vegetation index (NDVI), precipitation P, runoff R (or streamflow), soil moisture S, stan-
dardized precipitation index (SPI), standardized soil moisture index (SSI), standardized runoff index (SRI), 
snow water equivalent (SWE), and soil moisture index (SMI).

System Region Indicator
Time 
scale Resolution

Reference and/or website

U.S. Drought Monitor United States Category Weekly — Svoboda et al. (2002);  
http://droughtmonitor.unl.edu/

North American 
Drought Monitor

North 
America

Category Monthly — Lawrimore et al. (2002);  
www.drought.gov/nadm/

The Princeton U.S. 
Drought Monitoring 
and Prediction System

United States Percentile of P, 
S, SWE, and R

Monthly 0.125° Luo and Wood (2007);  
http://hydrology.princeton.edu/forecast/
current.php

NLDAS Drought 
Monitor and Seasonal 
Drought Forecast

United States Percentile 
(anomaly) of P, 
E, R, and SWE

Daily, 
weekly, 
monthly

0.125° Sheffield et al. (2012); Xia et al. (2014b); 
www.emc.ncep.noaa.gov/mmb/nldas 
/drought; www.emc.ncep.noaa.gov/mmb 
/nldas/forecast/TSM/prob/

U.S. Monthly (Seasonal) 
Drought Outlook

United States Drought 
tendency

Monthly, 
seasonal

— www.cpc.ncep.noaa.gov/products/Drought/

University of 
Washington Surface 
Water Monitor

United States SPI, SRI, 
percentile of S, 
R, and SWE

Weekly, 
monthly

0.5° Wood (2008); Wood and Lettenmaier 
(2006); www.hydro.washington.edu 
/forecast/monitor

Evaporative stress 
index

United States, 
North 
America, and 
South America

ESI Weekly, 
monthly

0.098° Anderson et al. (2011);  
https://hrsl.ba.ars.usda.gov/drought/

U.S.–Mexico Drought 
Prediction Tool

United States 
and Mexico

SPI Monthly 0.5° Lyon et al. (2012); Quan et al. (2012); 
http://iridl.ldeo.columbia.edu/maproom 
/Global/Drought/N_America/index.html

African Drought Moni-
toring and Forecasting 
System (Africa Flood 
and Drought Monitor)

Africa SPI, percentile of 
S and R, NDVI, 
and so on

Daily, 
monthly

0.25° Sheffield et al. (2014);  
http://stream.princeton.edu/AWCM 
/WEBPAGE/interface.php?locale=en

European Drought 
Observatory

Europe Drought 
tendency, SPI, S, 
fAPAR, CDI

Daily, 
10 day, 
monthly

— http://edo.jrc.ec.europa.eu/edov2/php 
/index.php?id=1000

Experimental Drought 
Monitor for India

India SPI, SSI, SRI Monthly 0.25° Shah and Mishra (2015);

German Drought 
Monitor

Germany Drought 
category based 
on SMI

Daily 4 km Zink et al. (2016);  
www.ufz.de/droughtmonitor

Drought Monitoring 
System for China

China Drought 
category, CI, SPI

Daily — http://cmdp.ncc-cma.net/en/
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REGIONAL DROUGHT INFORMATION 
SYSTEMS. In the past decades, the development of 
DMAPS has been achieved in many regions or coun-
tries (Heim and Brewer 2012), including the United 
States (Svoboda et al. 2002), Europe (e.g., European 
Drought Observatory; Acácio et al. 2013; Vogt et al. 
2011), China, and Africa (Sheffield et al. 2014; Shukla 
et al. 2014). For example, in the United States, the Na-
tional Integrated Drought Information System (NIDIS; 
www.drought.gov) provides a suite of drought systems 
and indicators for drought monitoring and forecast-
ing, such as the North American Drought Monitor, 
U.S. Drought Monitor, and surface water supply index 
(SWSI). Certain regions or countries affected by re-
curring drought have not established comprehensive 
drought information systems, such as parts of South 
America (Pulwarty and Sivakumar 2014). Because of 
the diversity of climate across the world, the develop-
ment and implementation of regional DMAPS need to 
be appropriate for the region in question (Heim and 
Brewer 2012; Svoboda et al. 2015). An example would 
be the DMAPS for the western United States that uses 
SWSI to incorporate snowpack information.

Table 1 lists parts of the regional DMAPS devel-
oped in recent years in different regions of the world, 
which monitor different aspects of drought, including 
the vegetation condition. This list is not meant to be 
comprehensive but illustrative of the recent develop-
ment of DMAPS. At the regional scale (except for 
regions with sparse observation networks, such as 
Africa), monitoring and prediction of different com-
ponents of the hydrological cycle can be achieved us-
ing hydrologic models (coupled with climate forecast) 
with a relatively long-term record, which is a salient 
nature of most regional systems in Table 1. An ex-
tended data record can generally be achieved by inte-
grating ground observations, model simulations, and 
remote sensing products for drought modeling and 
assessment (Houborg et al. 2012; Sheffield et al. 2012). 
Accordingly, the comprehensive characterization of 
different aspects or types of drought is generally fea-
sible. In the United States, for example, the Princeton 
DMAPS (Luo and Wood 2007) has been developed to 
take advantage of available observational networks, 
state-of-the-art land surface and climate models, and 
innovative statistical methods to monitor and predict 
a suite of drought indices to facilitate drought char-
acterization in multiple aspects. Moreover, drought 
conditions related to vegetation or evapotranspiration 
have also been monitored with drought indices from 
remote sensing products, such as NDVI or ESI.

Besides using drought indicators on a continu-
ous scale to assess the magnitude, discrete drought 

categories (or classes based on certain triggers) have 
also been included in drought monitoring (Lawrimore 
et al. 2002; Svoboda et al. 2002; Sepulcre-Canto et al. 
2012; Zink et al. 2016), which are useful to trigger 
responses in drought management (Steinemann and 
Cavalcanti 2006). The USDM drought category has 
been used as a benchmark for developing categorical 
DMAPS in the United States, either through optimizing 
drought area percentage (Xia et al. 2014b) or regressing 
drought categories with USDM as the initial condition 
(Hao et al. 2016b). For example, an automated approach 
was developed recently to objectively generate and 
reconstruct USDM-style drought maps with the objec-
tive blended NLDAS drought index (OBNDI) based 
on NLDAS-2 data by minimizing the differences with 
USDM drought area percentages (Xia et al. 2014b). This 
method was used to reconstruct the USDM drought 
categories for 1988 based on drought indices from 
NLDAS-2 (Fig. 4), which generally depicted the severe 
drought condition during the dry period of 1988 in the 
United States. Apart from monitoring the current sta-
tus of drought, the drought tendency (e.g., persistence, 
improvement, or recovery) has also been used to moni-
tor the evolution of drought conditions, as shown in the 
U.S. Monthly (Seasonal) Drought Outlook (www.cpc 
.ncep.noaa.gov/products/Drought/). However, com-
mon to all these drought information systems is 
that mostly physical indicators are used for drought 
characterization, while drought impacts are rarely 
incorporated into the system, except for a few drought 
information systems, such as USDM through the 
Drought Impact Reporter (DIR; Svoboda et al. 2015). 
Along with the progress in developments of drought 
information systems, the transition of advances in 
DMAPS into operations has been achieved and used 
operationally to aid decision-making. One of the recent 
advances in this regard is the transition of experimen-
tal hydrological prediction systems from Princeton 
University to the National Centers for Environmental 
Prediction (NCEP) of the National Oceanic and Atmo-
spheric Administration (NOAA) as part of the NOAA 
Climate Test Bed (Huang et al. 2016; Wood et al. 2015).

GLOBAL DROUGHT INFORMATION SYS-
TEMS. The development of an experimental global 
drought information system (GDIS) with real-time 
monitoring and forecasts has recently been recom-
mended and promoted (Heim and Brewer 2012; Pozzi 
et al. 2013).This is challenging mainly because of the 
lack of near-real-time forcing datasets of long-term 
historical records of the global coverage. Because 
satellite remote sensing precipitation provides the 
only practical way to measure precipitation on a 
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global basis (Yong et al. 2015), the development of a 
comprehensive DMAPS of the global coverage can 
only be achieved by reconstructing long-term records 
through integrating remote sensing products with 
ground-based observations and land surface model 
simulations (Pozzi et al. 2013).

For illustrative purposes, Table 2 lists DMAPS 
at the global scale that are mostly updated consis-
tently. Global drought monitoring is in its early 
stages and is mainly focused on the meteorological 
drought (or drought related to vegetation; Dutra 
et al. 2014a; Vicente-Serrano et al. 2010; Ziese et al. 

Fig. 4. Reconstructed drought categories from OBNDI for 1988 based on land surface model simulations from 
NLDAS-2 [modified from Xia et al. (2014b)].
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2014). Advances in remote sensing in recent decades 
have resulted in several global drought monitoring 
systems for monitoring drought conditions related 
to vegetation or evapotranspiration (Kogan 1997; Mu 
et al. 2013). Hydrological and agricultural droughts 
are more difficult to monitor at global scales as com-
pared with those at regional scales because of the lack 
of long-term forcing datasets at the global scale to 
provide inputs to land surface models. Few DMAPS 
have been developed to monitor different components 
of the hydrological cycle at the global scale (Hao et al. 
2014; Nijssen et al. 2014; Yuan et al. 2015a).

The advances of seasonal climate forecast, such as 
the NCEP Climate Forecast System (CFS), the North 
American Multimodel Ensemble (NMME), and the 
European Centre for Medium-Range Weather Fore-
casts (ECMWF) have enabled drought prediction at 
the global scale, and thus the development of global 
drought forecast/prediction component is feasible. 
As shown in Fig. 5, Princeton’s Global Seasonal Hy-
drologic Forecast System (Yuan et al. 2015a) uses me-
teorological ensemble forecasts from NMME to drive 
the Variable Infiltration Capacity (VIC) land surface 
hydrologic model and forecast hydrologic extreme 
events. As compared with the ESP forecasts over global 
large river basins, the multimodel global seasonal fore-
cast system provides better detection of soil moisture 
droughts, more reliable hydrologic drought forecast 

products, and a better real-time prediction for the 2012 
North American extreme drought (Yuan et al. 2015a). 
Currently, drought prediction in the global systems 
is mainly focused on drought indices, such as SPI or 
the percentile of soil moisture/runoff, while drought 
tendency (e.g., onset, persistence, or recovery; Pan 
et al. 2013; Yuan and Wood 2013) and impacts need 
more investigation.

DISCUSSION. Advances. Integrated drought 
monitoring. Reliable drought monitoring requires 
the integration of multiple hydroclimatic variables 
or indices from different sources to track multiple 
aspects of drought. Merging in situ observations, 
remote sensing products, land surface model simu-
lations, and climate forecasts with methods such 
as data assimilation for drought monitoring (and 
prediction) is an important advance in the develop-
ment of DMAPS. These data products for drought 
characterization are not only on a monthly basis 
but may also be available on a weekly or daily scale 
with refined spatial resolution (e.g., 4 km). With ad-
vances in data products and tools, the development 
of composite drought indicators for comprehensive 
drought characterization has been active in the past 
decade with substantial progress in approaches to 
combine multiple indicators. A variety of drought 
indicators have been continuously tracked and 

Table 2. Examples of global drought monitoring and prediction systems. Abbreviations indicate the fol-
lowing: drought severity index (DSI), Global Precipitation Climatology Centre drought index (GPCC-DI), 
multivariate standardized drought index (MSDI), Palmer drought severity index (PDSI), standardized 
precipitation evapotranspiration index (SPEI), temperature condition index (TCI), vegetation condition 
index (VCI), and vegetation health indices (VHI). (Abbreviations P, R, S, E, SPI, SRI, SSI, SWE, and NDVI 
are explained in Table 1.)

System Indicator Time 
scale

Resolution Reference and/or website

NOAA/NESDIS Global Vegetation 
Health products

VCI, TCI, VHI, 
NDVI

Weekly 4 and 16 km www.star.nesdis.noaa.gov/smcd/emb/vci/VH 
/vh_browse.php

SPEI Global Drought Monitor SPEI Monthly 0.5° Vicente-Serrano et al. (2010);  
http://sac.csic.es/spei/

Global terrestrial drought severity 
index

DSI 8 days, 
annual

0.05°, 0.5° Mu et al. (2013);  
www.ntsg.umt.edu/project/dsi

Global Drought Monitoring Portal SPI Monthly — www.drought.gov/gdm/

Global Integrated Drought 
Monitoring and Prediction System

SPI, SSI, 
MSDI

Monthly 0.5°, 2/3° × 1/2°, 
1°, 2.5°

Hao et al. (2014); http://drought.eng.uci.edu/

GPCC drought index product GPCC-DI Monthly 1° Ziese et al. (2014); ftp://ftp.dwd.de/pub/data 
/gpcc/html/gpcc_di_doi_download.html

Multimodel GDIS Percentile of 
S, SWE

Monthly 0.5° Nijssen et al. (2014)

Princeton’s Global Seasonal 
Hydrologic Forecast System

Percentile of 
S and R

Monthly 1° Yuan et al. (2015a);  
http://hydrology.princeton.edu/
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displayed in map or other forms to monitor various 
aspects of drought, including severity, duration, 
spatial extent, onset, development, recovery, and 
impacts as well. In addition, incorporating user 
preferences and feedback into the development (and 
evaluation) of drought indicators has also emerged 
to aid decision-making for operational drought 
management (Schubert et al. 2007; Steinemann et al. 
2015; Bachmair et al. 2016).

Multimodel ensemble drought prediction. Significant 
advances have been achieved in developing better 
general circulation models for seasonal climate and 
drought prediction (Mariotti et al. 2013; Mishra 
and Singh 2011; Pozzi et al. 2013), for which the 
multimodel ensemble has been among the most 
recent advances, either through multiple GCMs or 
multiple LSMs. For example, phase 1 of the NMME 
projects (Kirtman et al. 2014) released three decades 
of seasonal hindcast datasets that are widely used for 
drought diagnosis from climate and hydrologic per-
spectives (Mo and Lyon 2015; Yuan et al. 2015a). As 
NMME is entering into the second stage, high-tem-
poral-frequency datasets are being made available, 
and the process-based drought predictability studies 
(e.g., ocean–atmosphere and land–atmosphere inter-
actions) by using NMME hindcasts become feasible.

Assessment of the drought prediction skill based 
on hindcasts from climate models generally shows the 
added value from the multimodel ensemble drought 

forecasting (Huang et al. 
2016; Kirtman et al. 2014; 
Yuan and Wood 2013). Fig-
ure 6 shows real-time fore-
casting of a severe drought 
that occurred over southern 
China during the summer 
of 2013. NOAA/NCEP’s op-
erational seasonal climate 
forecast model CFS, ver-
sion 2 (CFSv2), predicted 
a broad drought condi-
tion over eastern China but 
did not capture the center 
of the drought over the 
middle and lower reaches 
of the Yangtze River basin 
(Figs. 6a,b). It even provid-
ed a false alarm over north-
ern China where drought 
did not occur (Fig. 6b). 
By averaging CFSv2 and 
five other NMME climate 

forecast models, the wet–dry dipole pattern over the 
northern and southern parts of China was captured 
well (Fig. 6c). The multimodel ensemble not only 
provides an improved forecast skill but also helps 
the uncertainty quantification of drought prediction. 
Considering the inherent uncertainties from differ-
ence sources, such as seasonal climate forecasting, 
land surface simulations, and model structure, it is 
important to enhance probabilistic drought forecast 
with multimodel ensemble techniques to aid decision-
making, which is an important step to bridge the gaps 
between the hydroclimatic forecasts and needs of 
stakeholders/users.

Challenges and opportunities. Near-real-time and 
long-term data products. The reliability and accuracy 
of DMAPS largely depend on the availability and 
quality of hydroclimatic observations (or simula-
tions) and impact data. Providing near-real-time and 
long-term data products of finer temporal resolution 
is desirable and challenging for the development of 
DMAPS, especially at the global scale. The consis-
tency between historical drought conditions and 
real-time monitoring and prediction is a key issue 
faced by nearly all real-time regional and global 
DMAPS (Huang et al. 2016; Wood et al. 2015). This 
has been partly addressed in several drought infor-
mation systems (Sheffield et al. 2014; Wood 2008) 
either based on merging historical records with near-
real-time remote sensing precipitation estimation 

Fig. 5. Framework of the Princeton’s Global Seasonal Hydrologic Forecast 
System. The system is based on a land surface hydrologic model and multiple 
global climate forecast models participating in the NMME project [revised 
from Yuan et al. (2015a)].
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(Nijssen et al. 2014) or short-range forecasts (Dutra 
et al. 2014a,b). For example, the multimodel GDIS 
developed at the University of Washington (Nijssen 
et al. 2014) is based on three separate datasets, 
including the Princeton forcing dataset (Sheffield 
et al. 2006; extended through 2008); the Tropical 
Rainfall Measuring Mission (TRMM) Multisatellite 
Precipitation Analysis, version 7, research quality 
product (Huffman et al. 2007; available with a time 
lag from a few weeks to months); and the TMPA real-
time product. In addition, since drought is always 
defined in relative terms, an inherent and particular 
requirement of the dataset for drought monitoring is 
a relatively long record (generally 30 years of records 
are required) to facilitate retrospective analysis. To 
provide the long record of climatology (and/or to im-
prove the accuracy), considerable efforts have been 
devoted to combining or merging different datasets 
of different temporal/spatial scales or lengths with 
methods such as data assimilation (AghaKouchak 
and Nakhjiri 2012; Dorigo et al. 2015; Dutra et al. 
2014a; Kumar et al. 2014; Sheffield et al. 2006). 
Moreover, data products of higher spatial resolutions 
are increasingly required for the local-scale drought 
assessment (e.g., 1-km subcounty level or 100-m field 
level), which is primarily achieved through satellite 
imagery (Wardlow et al. 2012).

Currently, remote sensing products for drought 
monitoring are subject to few challenges, includ-
ing short-record temporal inhomogeneity due to 
changes of observing platforms and inherent inac-
curacies (Sheffield et al. 2014; Wardlow et al. 2012), 
while for the land surface model simulations, certain 
limitations still exist, such as different simulations 
from even the identical forcing datasets due to 

different hydrologic parameterizations (Mo et al. 
2012a; Nijssen et al. 2014). How to merge different 
datasets (e.g., in situ observations, remote sensing, 
land surface model simulations, and weather and 
climate forecasts) with improved accuracy/resolution 
to develop near-real-time and long-term products and 
to maintain consistency with the historical condition 
needs to be explored.

Drought indicator development and linkage to 
impacts. The lack of an internationally accepted 
and agreed drought indicator for different types of 
drought is a sustained barrier in the development of 
operational DMAPS, especially for hydrological and 
agricultural droughts. In addition, certain limitations 
of currently used indicators, such as the statistical 
inconsistency across temporal and spatial scales, non-
comparability with other indicators, and subjective 
metrics hinder the effectiveness for decision-making 
(Mishra and Singh 2010; Steinemann et al. 2015). 
While integrated drought monitoring with multiple 
indicators has been well recognized, the development 
of objective indicators and approaches to integrating 
multiple information sources that are directly linked 
to the particular need of users is required and still 
challenging (Schubert et al. 2007; Steinemann et al. 
2015; Wood et al. 2015).

Most of the current DMAPS are based on physical 
indicators, while only few systems have been linked to 
socioeconomical or environmental impacts (Blauhut 
et al. 2015; Hannaford et al. 2015; Svoboda et al. 2015). 
Recently, drought indicator development integrating 
drought impacts and physical (or hydrometeorological) 
indicators for improved drought monitoring has been 
highlighted (Ferguson et al. 2016; Bachmair et al. 2016), 

Fig. 6. (a) Observation and (b),(c) real-time forecasting of seasonal-mean precipitation anomaly (mm) over 
eastern China during June–August (JJA) 2013 based on seasonal CFSv2 and NMME.
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which would be an important opportunity to enhance 
the development of integrated DMAPS to consider the 
vulnerability of the society or ecosystem to drought 
impacts. For example, the multinational Drought 
Impacts: Vulnerability Thresholds in Monitoring and 
Early Warning Research (DrIVER) project aims to 
fill the gap of integrating physical and socioeconomic 
drought indicators through strengthening the link be-
tween natural drought characterizations and ecologi-
cal/socioeconomic impacts on North America, Europe, 
and Australia (Hannaford et al. 2015). Though certain 
challenges exist in measuring or quantifying drought 
impacts, crop yield statistics, vegetation stress from 
remote sensing, and sources of the drought impacts 
database, such as the European Drought Impact Report 
Inventory (EDII; www.geo.uio.no/edc/droughtdb/; 
Stahl et al. 2016) and DIR (http://droughtreporter 
.unl.edu/map/), may aid drought research along this 
line (Bachmair et al. 2016). How to better use datasets 
from different sources to develop indicators that are 
directly linked to users’ needs and drought impacts 
across different sectors/scales for enhanced DMAPS 
remains a challenge.

Drought prediction skill evaluation and improvement. 
The drought prediction skill, based on hydroclimatic 
forecast, varies with seasons, regions, and lead time. 
Thus, a systematic evaluation of the forecast skill (and 
uncertainty) is of particular importance for the use 
of drought forecast products. Decades of seasonal 
climate hindcast products facilitate the model-based 
drought predictability analysis. For example, seasonal 
hindcasts from the CFSv2 and its previous version 
CFSv1 have been used to force a well-calibrated land 

surface hydrologic model to carry out 27-yr soil mois-
ture seasonal hindcasts over the conterminous United 
States, and the performance of the forecast with 
respect to different lead times and target months is 
shown in Fig. 7 (Yuan et al. 2013). Figure 7 shows that 
the dynamical forecast generally offers added values 
compared with the ESP forecast with advantages at 
longer-lead forecast (fewer impacts from the initial 
condition). The predictive skill is generally higher in 
winter due to the strong initial soil moisture control 
and/or better precipitation prediction from climate 
models, but it is relatively low in other seasons (and 
for long-lead forecast; Yuan et al. 2013). These results 
highlight the fact that the challenge still remains in 
improving the performance of seasonal drought (or 
precipitation) prediction for certain seasons (e.g., 
summer), regions, and beyond the 1-month lead time 
(or beyond lead times with negligible control by the 
initial condition; Wood et al. 2015).

Improved understanding of the drought mecha-
nism and predictability sources has great implica-
tions for drought prediction (Hoerling et al. 2014; 
Roundy et al. 2015; Schubert et al. 2009; Yuan et al. 
2016). For example, the relationship between large-
scale teleconnection patterns [e.g., El Niño–Southern 
Oscillation (ENSO)] and drought has been estab-
lished at different regions and used for improving 
drought prediction (Hoerling and Kumar 2003; 
Schubert et al. 2007, 2016; Wood et al. 2015). Though 
drought is generally defined over an extended period 
of time (e.g., months), drought onset and termina-
tion may occur at the subseasonal scale (e.g., flash 
drought). Thus, the improvement of drought (or hy-
drologic) forecast may be achieved through seamless 

Fig. 7. The squared correlation of predicted seasonal soil moisture drought severity (3-month duration) from a 
climatological forecast (ESP) and dynamical forecasts (CFSv1 and CFSv2) accumulated over the conterminous 
United States as functions of target months and lead months [revised from Yuan et al. (2013)].
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(or subseasonal to seasonal) prediction to integrate 
weather and climate prediction, which considers 
drought propagation or development within these 
time scales (Brown et al. 2012; Mo and Lettenmaier 
2015; Wang et al. 2016; Yuan et al. 2014). Multi-
model ensemble forecasts also have the potential 
to improve drought prediction capability. How to 
create reliable ensembles that retain sharpness, how 
to combine different climate forecast models with 
the largest model diversity and less overconfidence, 
and how to integrate dynamical and statistical en-
semble forecasting approaches are needed for the 
forecast skill enhancement. Last, assessing current 
drought prediction (and monitoring) capability and 
incorporating the latest advances are essential for the 
improvement of drought information systems at the 
regional and global scales. The NOAA Drought Task 
Force (DTF) Drought Capability Assessment Proto-
col, which helps quantify the capabilities of drought 
monitoring/prediction with several elements, such 
as assessment metrics, verification datasets, case 
studies, and baselines (Wood et al. 2015), would 
be particularly useful in improving DMAPS in the 
United States and other regions.

Information dissemination and communication. An 
essential element of a drought information system is 
the dissemination of tailored drought information to 
end users and decision-makers of different sectors. Ef-
fective dissemination of drought information that is 
timely and easy to understand for end users is needed 
to make informed decisions for operational drought 
management. This is of particular importance for 
the research-to-operation (R2O) transitions, which 
require not only effective distribution or delivery 
tools (e.g., user-friendly web interface, location-aware 
applications on smartphones and mobile devices) but 
also building of added values into DMAPS products 
with a deeper understanding of the needs of different 
user communities. Specifically, drought information 
from DMAPS should be disseminated by incorpo-
rating the needs of users (e.g., temporal and spatial 
scales, indicators) and tailored to specific applications 
or regions. A recent survey of state drought managers 
in the 19 Western Governors’ Association (WGA) 
states highlights the need to communicate with 
the decision-makers the information that drought 
managers actually use and need (Steinemann 2014; 
Steinemann et al. 2015). Improved services of the 
provision of drought information to users should 
involve appropriate engagement and feedback be-
tween drought information providers and end users 
to aid dissemination of drought information for 

decision-making (Otkin et al. 2015; Rhee et al. 2015; 
Schubert et al. 2007; Tadesse et al. 2016).

CONCLUSIONS. The current drought moni-
toring and prediction capacities and needs in the 
development of DMAPS at regional and global 
scales are reviewed in this study. Land surface model 
simulations, remote sensing products, and seasonal 
climate forecasts have been among the important 
advances toward enhanced and integrated drought 
monitoring and prediction capabilities. A common 
feature of most DMAPS is that multiple drought 
indicators are continuously tracked to characterize 
the climatic and hydrologic aspects of drought and 
the vegetation condition as well. The development of 
DMAPS at the global scale is still in its infancy with 
focus on meteorological drought or drought related 
to vegetation. Efforts are needed for the generation 
of near-real-time and long-term datasets at a finer 
temporal and spatial resolution to aid the develop-
ment of DMAPS, especially for the global cover-
age. Enhancing integrated drought monitoring to 
combine multiple indicators (or with impacts) and 
improving (probabilistic) drought prediction skills 
with multimodel climatic/hydrological forecasting, 
which are disseminated effectively with associated 
uncertainties and incorporating the needs of differ-
ent users, are also desirable to develop DMAPS for 
informed decision-making.

This study mainly focuses on scientific and tech-
nical aspects of the development of DMAPS without 
considering other related aspects, such as institutional 
challenges. A locally relevant DMAPS with global cov-
erage will be invaluable both for large-scale assessment 
and local-scale planning, which can be built through 
regional and global partnerships. The development of 
the drought information system necessitates participa-
tion and collaboration of local authorities and research 
institutions (Heim and Brewer 2012; Sivakumar et al. 
2014; Schubert et al. 2007), but there might be many 
issues regarding data sharing policy, coordination of 
participants with different backgrounds and purposes, 
and the sources of stable funding that can sustain con-
tinuous monitoring and forecasting efforts.
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